
The use of numerical methods to solve problems in 

orbital mechanics is a topic that is not often covered in 

introductory physics, although it is seen in the Feynman 

Lecture Series[1].  However, the widespread use of 

Excel in physics labs is an underutilized tool that can be 

used to introduce students to numerical approaches to 

the solution of complicated problems.

It is instructive to start with a one-dimensional problem.  

Four columns are created: time, x(t), v(t) and a(t).  Each 

row represents a step in time, so the time column 

increments by a user-defined step size, Δt. To start, 

assume a constant acceleration, although this need not 

be the case.  As the acceleration is given as Δv/Δt, this 

recovers the classic constant-acceleration kinematic 

formula of vf=vi+aΔt.  For an non-constant 

acceleration, the assumption made is that over the small 

Δt the acceleration can be treated as if it was constant. 

With knowledge of row n, the velocity in row n+1 can 

be calculated: vn+1=vn+anΔt.  This assignment is trivial 

in a spreadsheet.  Position is determined by Δx=vΔt, or 

xn+1=xn+vnΔt.  A slightly better result can be  found by 

evaluating v at the current iteration rather than the 

previous, xn+1=xn+vn+1Δt.  This twist is the Euler-

Cromer method, details can be found in numerical 

analysis texts[2].

The Euler-Cromer method can be easily extended into 

two dimensions simply by adding columns for y(t), vy(t) 

and ay(t).  The method gains its true power when a is 

varied.  This allows the introduction of twists such as 

forces that are functions of position or velocity, which 

are traditionally very difficult to examine.  A classic 

example is gravity.  Assuming a massive object at the 

origin, F(x,y) = GMm/r2, pointed towards the origin.  

Broken down into x and y components:

Fx= GMm (-x/r3)  and Fy = GMm(-y/r3)

Dividing through by m gives the accelerations as a 

function of position.  Given starting positions and 

velocities, the spreadsheet shows the time evolution of 

the system.  This tool can be used to fully explore 

Kepler’s Laws.
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I - The orbit of every planet is an ellipse with the Sun at 

one of the two foci.

Given a good choice of initial conditions, students can 

quite easily generate ellipses.  Note that they will need to 

pick a combination of speeds and distances that results in 

a negative total energy, otherwise hyperbolic orbit will 

be generated.  While there is nothing wrong with a 

comet on an escape trajectory, it isn’t described by the 

First Law.  Additionally, orbits that tend too near to the 

central object will be subject to very large forces near the 

origin relative to other parts of the orbit, and this will 

cause some of the approximations to generate large 

errors.  A possible exercise is to have students pick 

actual planetary data as a starting point.  Mercury is 

shown below.

II - A line joining a planet and the Sun sweeps out equal 

areas during equal intervals of time.
This result can be calculated directly by approximating the 

area swept as a triangle with a height of r and a base of 

rΔθ.  The graph below shows the results for an ellipse with 

3000 time steps, and an r ranging from 0.4 to 2.1, with the 

swept area changing by roughly 1% between the extremes:

Euler’s Method The Second Law

Given time constraints, students are asked to generate 

orbits with different eccentricities and to visually confirm 

that the orbits are ellipses.  However, a more careful 

treatment would have students confirm that the orbits 

actually are elliptical with the origin at one of the foci.  

This can lead to good analytic geometry discussions.
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The small discrepancy in the swept area occurs as the 

orbiting object gets closer to the central mass, and as the 

object gets faster the approximation gets worse.  An 

alternative approach is to calculate the angular 

momentum as a function of position, as the triangular 

area approximation approaches a multiple of the angular 

momentum in the limit Δt0.  This can be done by 

directly evaluating the cross product of the position and 

velocity: xvy – yvx.  This quantity is constant, 

demonstrating that angular momentum has been 

conserved by gravity.  This satisfies the students as the 

traditional explanation for Kepler’s Second Law follow 

angular momentum arguments. 

[1] R. P. Feynman, R.B. Leighton and M.L. Sands, The Feynman Lectures 

on Physics, Commemorative Issue (Addison-Wesley, Reading, 1989), p. 9-5 

to 9-9.

[2] A. L. Garcia, Numerical Methods for Physics, 1st ed. (Prentice-Hall, 

Englewood Cliffs, 1994), p. 37.

Statements of Kepler’s Laws from Wikipedia: Wikipedia contributors, 

"Kepler's laws of planetary motion," Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/w/index.php?title=Kepler%27s_laws_of_planetary_

motion&oldid=636349522 (accessed December 3, 2014).
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Kepler's Third Law

The Third Law

III - The square of the orbital period of a planet is 

directly proportional to the cube of the semi-major axis 

of its orbit. 

The Third Law is usually demonstrated by assuming a 

circular orbit and equating the centripetal force with 

Newtonian gravity.  This is dissatisfying as it gives the 

relationship T2 = r3, masking that the more complete 

treatment scales the square of the period with the cube of 

the semi-major axis.  Once students have a working 

spreadsheet, they can vary the semi-major axis of their 

orbits by changing the initial conditions.  By playing 

with the step size in time, they can determine how long it 

takes to complete one orbit.  From this they can graph 

the two quantities:

This approach relaxes the circular constraint, as the 

data points in the graph can come from ellipses with a 

wide range of eccentricities, and captures the correct 

semi-major axis dependence.

More advanced students can be encouraged to 

investigate the relationship between the slope of the 

line and the value of the central mass.  While it is 

useful in initial attempts at spreadsheets to set GM to 

unity, actual values can be used to model the orbits of 

planets around the sun or moons around a planet.  

When the true values are used, it is found that the 

slope is inversely proportional to the value of the 

central mass.  Note that this model, with a fixed 

massive central object, does not give the correct M+m 

behavior for the constant of proportionality. 
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